首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2319篇
  免费   216篇
  国内免费   2篇
  2023年   10篇
  2021年   39篇
  2020年   25篇
  2019年   34篇
  2018年   35篇
  2017年   31篇
  2016年   47篇
  2015年   101篇
  2014年   103篇
  2013年   131篇
  2012年   170篇
  2011年   167篇
  2010年   111篇
  2009年   73篇
  2008年   137篇
  2007年   122篇
  2006年   116篇
  2005年   135篇
  2004年   134篇
  2003年   136篇
  2002年   126篇
  2001年   32篇
  2000年   27篇
  1999年   30篇
  1998年   17篇
  1997年   26篇
  1996年   19篇
  1995年   21篇
  1994年   14篇
  1993年   30篇
  1992年   19篇
  1991年   17篇
  1990年   13篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   14篇
  1985年   20篇
  1984年   18篇
  1983年   11篇
  1982年   27篇
  1981年   16篇
  1980年   17篇
  1979年   9篇
  1978年   11篇
  1977年   7篇
  1976年   11篇
  1975年   11篇
  1974年   9篇
  1973年   12篇
排序方式: 共有2537条查询结果,搜索用时 238 毫秒
81.

Background

Culicoides biting midges (Diptera: Ceratopogonidae) are the biological vectors of globally significant arboviruses of livestock including bluetongue virus (BTV), African horse sickness virus (AHSV) and the recently emerging Schmallenberg virus (SBV). From 2006–2009 outbreaks of BTV in northern Europe inflicted major disruption and economic losses to farmers and several attempts were made to implicate Palaearctic Culicoides species as vectors. Results from these studies were difficult to interpret as they used semi-quantitative RT-PCR (sqPCR) assays as the major diagnostic tool, a technique that had not been validated for use in this role. In this study we validate the use of these assays by carrying out time-series detection of BTV RNA in two colony species of Culicoides and compare the results with the more traditional isolation of infectious BTV on cell culture.

Methodology/Principal Findings

A BTV serotype 1 strain mixed with horse blood was fed to several hundred individuals of Culicoides sonorensis (Wirth & Jones) and C. nubeculosus (Mg.) using a membrane-based assay and replete individuals were then incubated at 25°C. At daily intervals 25 Culicoides of each species were removed from incubation, homogenised and BTV quantified in each individual using sqPCR (Cq values) and virus isolation on a KC-C. sonorensis embryonic cell line, followed by antigen enzyme-linked immunosorbent assay (ELISA). In addition, comparisons were also drawn between the results obtained with whole C. sonorensis and with individually dissected individuals to determine the level of BTV dissemination.

Conclusions/Significance

Cq values generated from time-series infection experiments in both C. sonorensis and C. nubeculosus confirmed previous studies that relied upon the isolation and detection of infectious BTV. Implications on the testing of field-collected Culicoides as potential virus vectors by PCR assays and the use of such assays as front-line tools for use in diagnostic laboratories in this role are discussed.  相似文献   
82.
CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81–cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81–partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81''s function as a molecular scaffold; these insights are relevant to CD81''s varied roles in both health and disease.  相似文献   
83.
A modified approach was adopted to develop co-flocs consisting of Azospirillum brasilense MTCC-125 and Pseudomonas fluorescens MTCC-4828. The results of our study revealed that both Azospirillum and Pseudomonas strains exhibited a higher survivability when embedded in the flocs. The survivability of the strains in co-floc was found to be higher when compared to the log phase vegetative cells in different inoculant carriers, spermosphere rhizoplane and rhizosphere. The co-floc treatment has also significantly increased the germination percentage and vigour index of rice. In the present study flocculation was found to play a major role in enhancing adhesion of both the strains to rice roots. The co-flocs were studied for their efficiency to induce resistance in rice crop against rice blast. The relative role of Azospirillum and Pseudomonas co-flocs in the induction of resistance against the phytopathogen was evaluated. It was found that when the activities of polyphenol oxidase, peroxidase and phenol were high and when the relative amounts of the sugars were low, the disease infestation was less and vice versa. The association of these compounds strongly implies their role as casual agents of induced resistance against Pyricularia oryzae.  相似文献   
84.
The construction and testing of a unique instrument, the Paleobiosphere, which mimics some of the conditions of the ancient earth, is described. The instrument provides an experimental testing system for determining if certain microbes, when provided an adequate environment, can degrade biological materials to produce fuel-like hydrocarbons in a relatively short time frame that become trapped by the shale. The conditions selected for testing included a particulate Montana shale (serving as the “Trap Shale”), plant materials (leaves and stems of three extant species whose origins are in the late Cretaceous), a water-circulating system, sterile air, and a specially designed Carbotrap through which all air was passed as exhaust and volatile were hydrocarbons trapped. The fungus for initial testing was Annulohypoxylon sp., isolated as an endophyte of Citrus aurantifolia. It produces, in solid and liquid media, a series of hydrocarbon-like molecules. Some of these including 1,8-cineole, 2-butanone, propanoic acid, 2-methyl-, methyl ester, benzene (1-methylethyl)-, phenylethyl alcohol, benzophenone and azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl), [1S-(1α,7α,8aβ)]. These were the key signature compounds used in an initial Paleobiosphere test. After 3 weeks, incubation, the volatiles associated with the harvested “Trap Shale” included each of the signature substances as well as other fungal-associated products: some indanes, benzene derivatives, some cyclohexanes, 3-octanone, naphthalenes and others. The fungus thus produced a series of “Trap Shale” products that were representative of each of the major classes of hydrocarbons in diesel fuel (Mycodiesel). Initial tests with the Paleobiosphere offer some evidence for a possible origin of hydrocarbons trapped in bentonite shale. Thus, with modifications, numerous other tests can also be designed for utilization in the Paleobiosphere.  相似文献   
85.
86.
Vascular endothelial cell (EC) barrier integrity is critical to vessel homeostasis whereas barrier dysfunction is a key feature of inflammatory disorders and tumor angiogenesis. We previously reported that hepatocyte growth factor (HGF)-mediated increases in EC barrier integrity are signaled through a dynamic complex present in lipid rafts involving its receptor, c-Met (1). We extended these observations to confirm that S1PR1 (sphingosine 1-phosphate receptor 1) and integrin β4 (ITGB4) are essential participants in HGF-induced EC barrier enhancement. Immunoprecipitation experiments demonstrated HGF-mediated recruitment of c-Met, ITGB4 and S1PR1 to caveolin-enriched lipid rafts in human lung EC with direct interactions of c-Met with both S1PR1 and ITGB4 accompanied by c-Met-dependent S1PR1 and ITGB4 transactivation. Reduced S1PR1 expression (siRNA) attenuated both ITGB4 and Rac1 activation as well as c-Met/ITGB4 interaction and resulted in decreased transendothelial electrical resistance. Furthermore, reduced ITGB4 expression attenuated HGF-induced c-Met activation, c-Met/S1PR1 interaction, and effected decreases in S1P- and HGF-induced EC barrier enhancement. Finally, the c-Met inhibitor, XL880, suppressed HGF-induced c-Met activation as well as S1PR1 and ITGB4 transactivation. These results support a critical role for S1PR1 and ITGB4 transactivation as rate-limiting events in the transduction of HGF signals via a dynamic c-Met complex resulting in enhanced EC barrier integrity.  相似文献   
87.
Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ∼15- and ∼3-fold, respectively. These cells also showed nearly 6 times less resistance to gamma radiation at 12 kGy and ∼2-fold-higher sensitivity to 40 mM hydrogen peroxide than the wild type. In trans expression of drFrnE increased cytotoxicity of dithiothreitol (DTT) in the dsbA mutant of Escherichia coli. Recombinant drFrnE showed disulfide isomerase activity and could maintain insulin in its reduced form in the presence of DTT. While an equimolar ratio of wild-type protein could protect malate dehydrogenase completely from thermal denaturation at 42°C, the C22S mutant of drFrnE provided reduced protection to malate dehydrogenase from thermal inactivation. These results suggested that drFrnE is a protein disulfide isomerase in vitro and has a role in oxidative stress tolerance of D. radiodurans possibly by protecting the damaged cellular proteins from inactivation.  相似文献   
88.
Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates heterotrimeric G protein and H-Ras signaling pathways. RGS14 possesses an RGS domain that binds active Gαi/o-GTP subunits to promote GTP hydrolysis and a G protein regulatory (GPR) motif that selectively binds inactive Gαi1/3-GDP subunits to form a stable heterodimer at cellular membranes. RGS14 also contains two tandem Ras/Rap binding domains (RBDs) that bind H-Ras. Here we show that RGS14 preferentially binds activated H-Ras-GTP in live cells to enhance H-Ras cellular actions and that this interaction is regulated by inactive Gαi1-GDP and G protein-coupled receptors (GPCRs). Using bioluminescence resonance energy transfer (BRET) in live cells, we show that RGS14-Luciferase and active H-Ras(G/V)-Venus exhibit a robust BRET signal at the plasma membrane that is markedly enhanced in the presence of inactive Gαi1-GDP but not active Gαi1-GTP. Active H-Ras(G/V) interacts with a native RGS14·Gαi1 complex in brain lysates, and co-expression of RGS14 and Gαi1 in PC12 cells greatly enhances H-Ras(G/V) stimulatory effects on neurite outgrowth. Stimulation of the Gαi-linked α2A-adrenergic receptor induces a conformational change in the Gαi1·RGS14·H-Ras(G/V) complex that may allow subsequent regulation of the complex by other binding partners. Together, these findings indicate that inactive Gαi1-GDP enhances the affinity of RGS14 for H-Ras-GTP in live cells, resulting in a ternary signaling complex that is further regulated by GPCRs.  相似文献   
89.
Changes in extracellular osmolality have been shown to alter gene expression patterns and metabolic activity of various cell types, including chondrocytes. However, mechanisms by which physiological or pathological changes in osmolality impact chondrocyte function remain unclear. Here we use quantitative image analysis, electron microscopy, and a DNase I assay to show that hyperosmotic conditions (>400 mOsm/kg) induce chromatin condensation, while hypoosmotic conditions (100 mOsm/kg) cause decondensation. Large density changes (p < 0.001) occur over a very narrow range of physiological osmolalities, which suggests that chondrocytes likely experience chromatin condensation and decondensation during a daily loading cycle. The effect of changes in osmolality on nuclear morphology (p < 0.01) and chromatin condensation (p < 0.001) also differed between chondrocytes in monolayer culture and three-dimensional agarose, suggesting a role for cell adhesion. The relationship between condensation and osmolality was accurately modeled by a polymer gel model which, along with the rapid nature of the chromatin condensation (<20 s), reveals the basic physicochemical nature of the process. Alterations in chromatin structure are expected to influence gene expression and thereby regulate chondrocyte activity in response to osmotic changes.  相似文献   
90.
In an effort to understand the origin of blood-pressure lowering effects observed in recent clinical trials with 11β-HSD1 inhibitors, we examined a set of 11β-HSD1 inhibitors in a series of relevant in vitro and in vivo assays. Select 11β-HSD1 inhibitors reduced blood pressure in our preclinical models but most or all of the blood pressure lowering may be mediated by a 11β-HSD1 independent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号